Распределение ключей. Способы распределения ключей с использованием ЦРК на начальном этапе Практические применения криптографических конструкций, особенности их реализации

Как бы ни была сложна и надежна сама криптосистема, она основана на использовании ключей. Если для обеспечения конфиденциального обмена информацией между двумя пользователями процесс обмена ключами три­виален, то в системе, где количество пользователей составляет десятки и сотни управление ключами, – это серьезная проблема.

Под ключевой информацией понимается совокупность всех действую­щих в системе ключей. Если не обеспечено достаточно надежное управле­ние ключевой информацией, то, завладев ею, злоумышленник получает не­ограниченный доступ ко всей информации.

Управление ключами – информационный процесс, включающий в себя три элемента:

Генерацию ключей;

Накопление ключей;

Распределение ключей.

Генерация ключей. В реальных системах используются специальные аппаратные и программные методы генерации случайных ключей. Как правило используют датчики случайных чисел. Однако степень случайности их генерации должна быть достаточно высокой. Идеальными генераторами являются устройства на основе “натуральных” случайных процессов. Напри­мер, генерация ключей на основе белого радиошума. Другим случайным математическим объектом являются десятичные знаки иррациональных чисел, например p или е, которые вычисляются с помощью стандартных математических методов.

В системах со средними требованиями защищенности вполне приемлемы программные генераторы ключей, которые вычисляют случайные числа как сложную функцию от текущего времени и (или) числа, введенного пользователем.

Накопление ключей. Под накоплением ключей понимается организация их хранения, учета и удаления.

Поскольку ключ является самым привлекательным для злоумышленника объектом, открывающим ему путь к конфиденциальной информации, то во­просам накопления ключей следует уделять особое внимание.

Секретные ключи никогда не должны записываться в явном виде на но­сителе, который может быть считан или скопирован.

В достаточно сложной системе один пользователь может работать с большим объемом ключевой информации, и иногда даже возникает необхо­димость организации минибаз данных по ключевой информации. Такие ба­зы данных отвечают за принятие, хранение, учет и удаление используемых ключей.

Каждая информация об используемых ключах должна храниться в за­шифрованном виде. Ключи, зашифровывающие ключевую информацию на­зываются мастер-ключами. Желательно, чтобы мастер-ключи каж­дый пользователь знал наизусть и не хранил их вообще на каких-либо мате­риальных носителях.

Очень важным условием безопасности информации является периодиче­ское обновление ключевой информации в системе. При этом переназначать­ся должны как обычные ключи, так и мастер-ключи. В особо ответственных системах обновление ключевой информации необходимо производить ежедневно.


Вопрос обновления ключевой информации связан и с третьим элементом управления ключами – распределением ключей.

Распределение ключей. Распределение ключей – самый ответственный процесс в управлении ключами. К нему предъявляются два требования:

Оперативность и точность распределения;

Скрытность распределяемых ключей.

В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в системе требует но­вых эффективных решений.

Распределение ключей между пользователями реализуются двумя раз­ными подходами:

1 Путем создания одного или нескольких центров распределения клю­чей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены, и это позволяет читать все сооб­щения, циркулирующие в системе. Возможные злоупотребления существен­но влияют на защиту.

2 Прямой обмен ключами между пользователями системы. В этом слу­чае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов.

В обоих случаях должна быть гарантирована подлинность сеанса связи. Это можно обеспечить двумя способами:

1 Механизм запроса-ответа, который состоит в следующем. Если поль­зователь А желает быть уверенным, что сообщения, которые он получает от пользователя В, не являются ложными, он включает в посылаемое для В со­общение непредсказуемый элемент (запрос). При ответе пользователь В должен выполнить некоторую операцию над этим элементом (например, до­бавить 1). Это невозможно осуществить заранее, так как не известно, какое случайное число придет в запросе. После получения ответа с результатами действий пользователь А может быть уверен, что сеанс является подлин­ным. Недостатком этого метода является возможность установления, хотя и сложной, закономерности между запросом и ответом.

2 Механизм отметки времени. Он подразумевает фиксацию времени для каждого сообщения. В этом случае каждый пользователь системы может знать, насколько “старым” является пришедшее сообщение.

В обоих случаях следует использовать шифрование, чтобы быть уверенным, что ответ послан не злоумышленником и штемпель отметки времени не изменен.

При использовании отметок времени встает проблема допустимого вре­меннόго интервала задержки для подтверждения подлинности сеанса. Ведь сообщение с отметкой времени в принципе не может быть передано мгно­венно. Кроме этого, компьютерные часы получателя и отправителя не могут быть абсолютно синхронизированы.

Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA.

Но весьма эффективным оказался алгоритм Диффи-Хелмана, позволяющий двум пользователям без посредников обменяться ключом, который может быть использован затем для симметричного шифрования.

Алгоритм Диффи-Хеллмана. Диффи и Хелман предложили для создания криптографических систем с открытым ключом функцию дикретного возведения в степень.

Необратимость преобразования в этом случае обеспечивается тем, что достаточно легко вычислить показательную функцию в конечном поле Галуа, состоящим из p элементов (p – либо простое число, либо простое в любой степени). Вычисление же логарифмов в таких полях – значительно более трудоемкая операция.

Для обмена информацией первый пользователь выбирает случайное число x 1 , равновероятное из целых чисел от 1 до p – 1. Это число он держит в секрете, а другому пользователю посылает число y 1 = , где α – фиксированный элемент поля Галуа GF (p ), который вместе с p заранее распространяется между пользователями.

Аналогично поступает и второй пользователь, генерируя x 2 и вычислив y 2 , отправляя его первому пользователю. В результате этого они оба могут вычислить общий секретный ключ k 12 = .

Для того, чтобы вычислить k 12 , первый пользователь возводит y 2 в степень x 1 и находит остаток от деления на p . То же делает и второй пользователь, только используя y 1 и x 2 . Таким образом, у обоих пользователей оказывается общий ключ k 12 , который можно использовать для шифрования информации обычными алгоритмами. В отличие от алгоритма RSA, данный алгоритм не позволяет шифровать собственно информацию.

Не зная x 1 и x 2 , злоумышленник может попытаться вычислить k 12 , зная только перехваченные y 1 и y 2 . Эквивалентность этой проблемы проблеме вычисления дискретного логарифма есть главный и открытый вопрос в системах с открытым ключом. Простого решения до настоящего времени не найдено. Так, если для прямого преобразования 1000-битных простых чисел требуется 2000 операций, то для обратного преобразования (вычисления логарифма в поле Галуа) – потребуется около 1030 операций.

Как видно, при всей простоте алгоритма Диффи-Хелмана, его недостатком по сравнению с системой RSA является отсутствие гарантированной нижней оценки трудоемкости раскрытия ключа.

Кроме того, хотя описанный алгоритм позволяет обойти проблему скрытой передачи ключа, необходимость аутентификации остается. Без дополнительных средств, один из пользователей не может быть уверен, что он обменялся ключами именно с тем пользователем, который ему нужен.

При симметричном шифровании два участника, которые хотят обмениваться конфиденциальной информацией, должны иметь один и тот же ключ. Частота изменения ключа должна быть достаточно большой, чтобы у противника не хватило времени для полного перебора ключа. Следовательно, сила любой криптосистемы во многом зависит от технологии распределения ключа . Этот термин означает передачу ключа двум участникам, которые хотят обмениваться данными, таким способом, чтобы никто другой не мог ни подсмотреть, ни изменить этот ключ. Для двух участников А и B распределение ключа может быть выполнено одним из следующих способов.

  1. Ключ может быть создан А и физически передан B .
  2. Третья сторона может создать ключ и физически передать его А и B .
  3. А и В имеют предварительно созданный и недолго используемый ключ, один участник может передать новый ключ другому, применив для шифрования старый ключ.
  4. Если А и В каждый имеют безопасное соединение с третьим участником C , C может передать ключ по этому безопасному каналу А и B .

Первый и второй способы называются ручным распределением ключа . Это самые надежные способы распределения ключа , однако во многих случаях пользоваться ими неудобно и даже невозможно. В распределенной системе любой хост или сервер должен иметь возможность обмениваться конфиденциальной информацией со многими аутентифицированными хостами и серверами. Таким образом, каждый хост должен иметь набор ключей, поддерживаемый динамически. Проблема особенно актуальна в больших распределенных системах.

Количество требуемых ключей зависит от числа участников, которые должны взаимодействовать. Если выполняется шифрование на сетевом или IP-уровне, то ключ необходим для каждой пары хостов в сети. Таким образом, если есть N хостов, то необходимое число ключей /2 . Если шифрование выполняется на прикладном уровне, то ключ нужен для каждой пары прикладных процессов, которых гораздо больше, чем хостов.

Третий способ распределения ключей может применяться на любом уровне стека протоколов , но если атакующий получает возможность доступа к одному ключу, то вся последовательность ключей будет раскрыта. Более того, все равно должно быть проведено первоначальное распространение большого количества ключей.

Поэтому в больших автоматизированных системах широко применяются различные варианты четвертого способа. В этой схеме предполагается существование так называемого центра распределения ключей (Key Destribution Centre - KDC ), который отвечает за распределение ключей для хостов, процессов и приложений. Каждый участник должен разделять уникальный ключ с KDC .

Использование центра распределения ключей основано на использовании иерархии ключей. Как минимум используется два типа ключей: мастер-ключи и ключи сессии .

Для обеспечения конфиденциальной связи между конечными системами используется временный ключ, называемый ключом сессии . Обычно ключ сессии используется для шифрования транспортного соединения и затем уничтожается. Каждый ключ сессии должен быть получен по сети из центра распределения ключей . Ключи сессии передаются в зашифрованном виде, используя мастер-ключ , который разделяется между центром распределения ключей и конечной системой.

Эти мастер-ключи также должны распределяться некоторым безопасным способом. Однако при этом существенно уменьшается количество ключей, требующих ручного распределения. Если существует N участников, которые хотят устанавливать соединения, то в каждый момент времени необходимо /2 ключей сессии . Но требуется только N

Распределение ключей - самый ответственный процесс в управлении ключами. К нему предъявляются два требования:

1.Оперативность и точность распределения

2.Скрытность распределяемых ключей.

В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в ИС требует новых эффективных решений.

Распределение ключей между пользователями реализуются двумя разными подходами:

1.Путем создания одного ли нескольких центров распределения ключей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены и это позволяет читать все сообщения, циркулирующие в ИС. Возможные злоупотребления существенно влияют на защиту.

2.Прямой обмен ключами между пользователями информационной системы.

В этом случае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов.

В обоих случаях должна быть гарантирована подлинность сеанса связи. Это можно обеспечить двумя способами:

1.Механизм запроса-ответа, который состоит в следующем. Если пользователь А желает быть уверенным, что сообщения который он получает от В, не являются ложными, он включает в посылаемое для В сообщение непредсказуемый элемент (запрос). При ответе пользователь В должен выполнить некоторую операцию над этим элементом (например, добавить 1). Это невозможно осуществить заранее, так как не известно, какое случайное число придет в запросе. После получения ответа с результатами действий пользователь А может быть уверен, что сеанс является подлинным. Недостатком этого метода является возможность установления хотя и сложной закономерности между запросом и ответом.

2.Механизм отметки времени ("временной штемпель"). Он подразумевает фиксацию времени для каждого сообщения. В этом случае каждый пользователь ИС может знать, насколько "старым" является пришедшее сообщение.

В обоих случаях следует использовать шифрование, чтобы быть уверенным, что ответ послан не злоумышленником и штемпель отметки времени не изменен.

При использовании отметок времени встает проблема допустимого временного интервала задержки для подтверждения подлинности сеанса. Ведь сообщение с "временным штемпелем" в принципе не может быть передано мгновенно. Кроме этого компьютерные часы получателя и отправителя не могут быть абсолютно синхронизированы. Какое запаздывание "штемпеля" считать подозрительным.

Поэтому в реальных ИС, например в системах оплаты кредитных карточек используется именно второй механизм установления подлинности и защиты от подделок. Используемый интервал составляет от одной до нескольких минут. Большое число известных способов кражи электронных денег, основано на "вклинивании" в этот промежуток с подложными запросами на снятии денег.

Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA, но весьма эффективным оказался алгоритм Диффи-Хелмана, позволяющий двум пользователям без посредников обменяться ключом, который может быть использован затем для симметричного шифрования. При всей простоте алгоритма Диффи-Хелмана, недостатком его по сравнению с системой RSA является отсутствие гарантированной нижней оценки трудоемкости раскрытия ключа.

Кроме того, хотя описанный алгоритм позволяет обойти проблему скрытой передачи ключа, необходимость аутентификации остается. Без дополнительных средств, один из пользователей не может быть уверен, что он обменялся ключами именно с тем пользователем, который ему нужен. Опасность имитации в этом случае остается.

Оригинальные решения проблемы " блуждающих ключей" активно разрабатываются специалистами. Эти системы являются некоторым компромиссом между системами с открытыми ключами и обычными алгоритмами, для которых требуется наличие одного и того же ключа у отправителя и получателя.

Идея метода достаточно проста. После того, как ключ использован в одном сеансе по некоторому правилу он сменяется другим.

Это правило должно быть известно и отправителю, и получателю. Зная правило, после получения очередного сообщения получатель тоже меняет ключ. Если правило смены ключей аккуратно соблюдается и отправителем и получателем, то в каждый момент времени они имеют одинаковый ключ. Постоянная смена ключа затрудняет раскрытие информации злоумышленником.

Основная задача в реализации этого метода - выбор эффективного правила смены ключей. Наиболее простой путь - генерация случайного списка ключей. Смена ключей осуществляется в порядке списка. Однако, очевидно список придется каким-то образом передавать.

Другой вариант - использование математических алгоритмов, основанных на так называемых перебирающих последовательностях. На множестве ключей путем одной и той же операции над элементом получается другой элемент. Последовательность этих операций позволяет переходить от одного элемента к другому, пока не будет перебрано все множество.

Наиболее доступным является использование полей Галуа. За счет возведения в степень порождающего элемента можно последовательно переходить от одного числа к другому. Эти числа принимаются в качестве ключей.

Ключевой информацией в данном случае является исходный элемент, который перед началом связи должен быть известен и отправителю и получателю.

Надежность таких методов должна быть обеспечена с учетом известности злоумышленнику используемого правила смены ключей.

Распределение ключей – самый ответственный процесс в управлении ключами. К нему предъявляются следующие требования:

· оперативность и точность распределения;

· скрытность распределяемых ключей.

Распределение ключей между пользователями компьютерной сети реализуется двумя способами:

1) использованием одного или нескольких центров распределения ключей;

2) прямым обменом сеансовыми ключами между пользователями сети.

Недостаток первого подхода состоит в том, что центру распределения ключей известно, кому и какие ключи распределены, и это позволяет читать все сообщения, передаваемые по сети. Возможные злоупотребления существенно влияют на защиту. При втором подходе проблема состоит в том, чтобы надежно удостоверить подлинность субъектов сети.

В обоих случаях должна быть обеспечена подлинность сеанса связи. Это можно осуществить, используя механизм запроса-ответа или механизм отметки времени.

Механизм запроса-ответа заключается в следующем. Пользователь А включает в посылаемое сообщение (запрос) для пользователя В непредсказуемый элемент (например, случайное число). При ответе пользователь В должен выполнить некоторую операцию с этим элементом (например, добавить единицу), что невозможно осуществить заранее, поскольку неизвестно, какое случайное число придет в запросе. После получения результата действий пользователя В (ответ) пользователь А может быть уверен, что сеанс является подлинным.

Механизм отметки времени предполагает фиксацию времени для каждого сообщения. Это позволяет каждому субъекту сети определить, насколько старо пришедшее сообщение, и отвергнуть его, если появится сомнение в его подлинности. При использовании отметок времени необходимо установить допустимый временной интервал задержки.

В обоих случаях для защиты элемента контроля используют шифрование, чтобы быть уверенным, что ответ отправлен не злоумышленником и не изменен штемпель отметки времени.



Задача распределения ключей сводится к построению протокола распределения ключей, обеспечивающего:

· взаимное подтверждение подлинности участников сеанса;

· подтверждение достоверности сеанса механизмом запроса-ответа или отметки времени;

· использование минимального числа сообщений при обмене ключами;

· возможность исключения злоупотреблений со стороны центра распределения ключей (вплоть до отказа от него).

В основу решения задачи распределения ключей целесообразно положить принцип отделения процедуры подтверждения подлинности партнеров от процедуры собственно распределения ключей. Цель такого подхода состоит в создании метода, при котором после установления подлинности участники сами формируют сеансовый ключ без участия центра распределения ключей с тем, чтобы распределитель ключей не имел возможности выявить содержание сообщений.

Распределение ключей с участием центра распределения ключей. При распределении ключей между участниками предстоящего информационного обмена должна быть гарантирована подлинность сеанса связи. Для взаимной проверки подлинности партнеров приемлема модель рукопожатия . В этом случае ни один из участников не будет получать никакой секретной информации во время процедуры установления подлинности.

Взаимное установление подлинности гарантирует вызов нужного субъекта с высокой степенью уверенности, что связь установлена с требуемым адресатом и никаких попыток подмены не было. Реальная процедура организации соединения между участниками информационного обмена включает как этап распределения, так и этап подтверждения подлинности партнеров.

При включении в процесс распределения ключей центра распределения ключей (ЦРК) осуществляется его взаимодействие с одним или обоими участниками сеанса с целью распределения секретных или открытых ключей, предназначенных для использования в последующих сеансах связи.

Следующий этап – подтверждение подлинности участников – содержит обмен удостоверяющими сообщениями, чтобы иметь возможность выявить любую подмену или повтор одного из предыдущих вызовов.

Рассмотрим протоколы для симметричных криптосистем с секретными ключами и для асимметричных криптосистем с открытыми ключами. Вызывающий (исходный объект) обозначается через А, а вызываемый (объект назначения) – через В. Участники сеанса А и В имеют уникальные идентификаторы Id A и Id B соответственно.

5.6.4. Протокол аутентификации и распределения
ключей для симметричных криптосистем

Рассмотрим в качестве примера протокол аутентификации и распределения ключей Kerberos (по-русски – Цербер). Протокол Kerberos спроектирован для работы в сетях TCP/IP и предполагает участие в аутентификации и распределении ключей третьей доверенной стороны. Kerberos обеспечивает надежную аутентификацию в сети, разрешая законному пользователю доступ к различным машинам в сети. Протокол Kerberos основывается на симметричных шифрах (реализован алгоритм DES, хотя возможно применение и других симметричных криптоалгоритмов). Kerberos вырабатывает отдельный секретный ключ для каждого субъекта сети, и знание такого секретного ключа равносильно доказательству подлинности субъекта сети.

Основной протокол Kerberos является вариантом протокола аутентификации и распределения ключей Нидхема-Шредера. В версии 5 основного протокола Kerberos участвуют две взаимодействующие стороны А и В и доверенный сервер KS (Kerberos Server). Стороны А и В, каждая по отдельности, разделяют свой секретный ключ с сервером KS. Доверенный сервер KS выполняет роль центра распределения ключей ЦРК.

Пусть сторона А хочет получить сеансовый ключ для информационного обмена со стороной В.

Сторона А инициирует фазу распределения ключей, посылая по сети серверу KS идентификаторы Id A и Id B:

(1) A ® KS: Id A, Id B.

Сервер KS генерирует сообщение с временной отметкой Т, сроком действия L, случайным сеансовым ключом К и идентификатором Id A . Он шифрует это сообщение секретным ключом, который разделяет со стороной В.

Затем сервер KS берет временную отметку Т, срок действия L, сеансовый ключ К, идентификатор Id B стороны В и шифрует все это секретным ключом, который разделяет со стороной А. Оба эти зашифрованные сообщения он отправляет стороне А:

(2) KS ® A: E A (T, L, K, Id B), E B (T, L, K, Id A).

Сторона А расшифровывает первое сообщение своим секретным ключом, проверяет отметку времени Т, чтобы убедиться, что это сообщение не является повторением предыдущей процедуры распределения ключей.

Затем сторона А генерирует сообщение со своим идентификатором Id A и отметкой времени Т, шифрует его сеансовым ключом К и отправляет стороне В. Кроме того, А отправляет для В сообщение от KS, зашифрованное ключом стороны В:

(3) A ® B: E K (Id A, T), E B (T, L, K, Id A).

Только сторона В может расшифровать сообщения (3). Сторона В получает отметку времени Т, срок действия L, сеансовый ключ К и идентификатор Id A . Затем сторона В расшифровывает сеансовым ключом К вторую часть сообщения (3). Совпадение значений Т и Id A в двух частях сообщения подтверждают подлинность А по отношению к В.

Для взаимного подтверждения подлинности сторона В создает сообщение, состоящее из отметки времени Т плюс 1, шифрует его ключом К и отправляет стороне A:

(4) B ® A: E K (T+1).

Если после расшифрования сообщения (4) сторона А получает ожидаемый результат, она знает, что на другом конце линии связи находится действительно В.

Этот протокол успешно работает при условии, что часы каждого участника синхронизированы с часами сервера KS. Следует отметить, что в этом протоколе необходим обмен с KS для получения сеансового ключа каждый раз, когда А желает установить связь с В. Протокол обеспечивает надежное соединение объектов А и В при условии, что ни один из ключей не скомпрометирован и сервер KS защищен.

Система Kerberos обеспечивает защиту сети от несанкционированного доступа, базируясь исключительно на программных решениях, и предполагает многократное шифрование передаваемой по сети управляющей информации.

Система Kerberos имеет структуру типа клиент-сервер и состоит из клиентских частей С, установленных на все машины сети (рабочие станции пользователей и серверы), и Kerberos-сервера KS, располагающегося на каком-либо (не обязательно выделенном) компьютере.

Kerberos-сервер, в свою очередь, можно разделить на две части: сервер идентификации AS (Authentication Server) и сервер выдачи разрешений TGS (Ticket Granting Server). Информационными ресурсами, необходимыми клиентам С, управляет сервер информационных ресурсов RS (см. следующий рис.).

Область действия системы Kerberos распространяется на тот участок сети, все пользователи которого зарегистрированы под своими именами и паролями в базе данных Kerberos-сервера.


Рис. 41. Схема и шаги протокола Kerberos.

Обозначения:

KS – сервер системы Kerberos;

AS – сервер идентификации;

TGS – сервер выдачи разрешений;

RS – сервер информационных ресурсов;

C – клиент системы Kerberos;

1: C ® AS: –- запрос разрешить обратиться к TGS;

2: AS ® C: – разрешение обратиться к TGS;

3: C ® TGS: – запрос на допуск к RS;

4: TGS ® C: – разрешение на допуск к RS;

5: C ® RS: – запрос на получение информационного ресурса от RS;

6: RS ® C: – подтверждение подлинности сервера RS и предоставление

информационного ресурса.

Укрупненно процесс идентификации и аутентификации пользователя в системе Kerberos можно списать следующим образом. Пользователь (клиент) С, желая получить доступ к ресурсу сети, направляет запрос серверу идентификации AS. Последний идентифицирует пользователя с помощью его имени и пароля и выдает разрешение на доступ к серверу выдачи разрешений TGS, который в свою очередь, по запросу клиента С разрешает использование необходимых ресурсов сети с помощью целевого сервера информационных ресурсов RS.

Данная модель взаимодействия клиента с серверами может функционировать только при условии обеспечения конфиденциальности и целостности передаваемой управляющей информации. Без строгого обеспечения информационной безопасности клиент не может отправлять серверам AS, TGS и RS свои запросы и получать разрешения на доступ к обслуживанию в сети. Чтобы избежать возможности перехвата и несанкционированного использования информации, Kerberos применяет при передаче любой управляющей информации в сети сложную систему многократного шифрования с использованием комплекса секретных ключей (секретный ключ клиента, секретный ключ сервера, секретные сеансовые ключи, клиент-сервер).

5.6.5. Протокол для асимметричных криптосистем
с использованием сертификатов открытых ключей

В этом протоколе используется идея сертификатов открытых ключей.

Сертификатом открытого ключа С называется сообщение центра распределения ключей (ЦРК), удостоверяющее целостность некоторого открытого ключа объекта. Например, сертификат открытого ключа для пользователя А, обозначаемый С А, содержит отметку времени Т, идентификатор Id А и открытый ключ К А, зашифрованные секретным ключом ЦРК k ЦРК, т.е.

С А = (Т, Id А, К А).

Отметка времени Т используется для подтверждения актуальности сертификата и тем самым предотвращает повторы прежних сертификатов, которые содержат открытые ключи и для которых соответствующие секретные ключи несостоятельны.

Секретный ключ k ЦРК известен только менеджеру ЦРК. Открытый ключ К ЦРК известен участникам А и В. ЦРК поддерживает таблицу открытых ключей всех объектов сети, которые он обслуживает.

Вызывающий объект А инициирует стадию установления ключа, запрашивая у ЦРК сертификат своего открытого ключа и открытого ключа участника В:

(1) А ® ЦРК: Id A , Id B , ´Вышлите сертификаты ключей А и В´. Здесь Id A и Id B – уникальные идентификаторы соответственно участников А и В.

Менеджер ЦРК отвечает сообщением

(2) ЦРК ® А: (Т, Id A , К А), (Т, Id B , К В).

Участник А, используя открытый ключ ЦРК К ЦРК, расшифровывает ответ ЦРК, проверяет оба сертификата. Идентификатор Id B убеждает А, что личность вызываемого участника правильно зафиксирована в ЦРК и К В – действительно открытый ключ участника В, поскольку оба зашифрованы ключом k ЦРК.

Хотя открытые ключи предполагаются известными всем, посредничество ЦРК позволяет подтвердить их целостность. Без такого посредничества злоумышленник может снабдить А своим открытым ключом, который А будет считать ключом участника В.
Затем злоумышленник может подменить собой В и установить связь с А, и его никто не сможет выявить.

Следующий шаг протокола включает установление связи А с В:

(3) А ® В: С А, (Т), (r 1).

Здесь С А – сертификат открытого ключа пользователя А;

(Т) – отметка времени, зашифрованная секретным ключом участника А и являющаяся подписью участника А, поскольку никто другой не может создать такую подпись;

r 1 – случайное число, генерируемое А и используемое для обмена с В в ходе процедуры подлинности.

Если сертификат С А и подпись А верны, то участник В уверен, что сообщение пришло от А. Часть сообщения (r 1) может расшифровать только В, поскольку никто другой не знает секретного ключа k В, соответствующего открытому ключу К В. Участник В расшифровывает значение числа r 1 и, чтобы подтвердить свою подлинность, посылает участнику А сообщение

(4) В ® А: (r 1).

Участник А восстанавливает значение r 1 , расшифровывая это сообщение с использованием своего секретного ключа k А. Если это ожидаемое значение r 1 , то А получает подтверждение, что вызываемый участник действительно В.

Протокол, основанный на симметричном шифровании, функционирует быстрее, чем протокол, основанный на криптосистемах с открытыми ключами. Однако способность систем с открытыми ключами генерировать цифровые подписи, обеспечивающие различные функции защиты, компенсирует избыточность требуемых вычислений.

Прямой обмен ключами между пользователями. При использовании для информационного обмена криптосистемы с симметричным секретным ключом два пользователя, желающие обменяться криптографически защищенной информацией, должны обладать общим секретным ключом. Пользователи должны обменяться общим ключом по каналу связи безопасным образом. Если пользователи меняют ключ достаточно часто, то доставка ключа превращается в серьезную проблему.

Для решения этой проблемы применяют два способа:

1) использование криптосистемы с открытым ключом для шифрования и передачи

секретного ключа симметричной криптосистемы;

2) использование системы открытого распределения ключей Диффи–Хеллмана

(см.раздел 5.4.2).

5.6.6. Использование криптосистемы с открытым ключом для шифрования и передачи
секретного ключа симметричной криптосистемы

Алгоритмы, лежащие в основе криптосистем с открытым ключом, имеют следующие

недостатки:

· генерация новых секретных и открытых ключей основана на генерации новых больших простых чисел, а проверка простоты чисел занимает много процессорного времени;

· процедуры шифрования и расшифрования, связанные с возведением в степень многозначного числа, достаточно громоздки.

Поэтому быстродействие криптосистем с открытым ключом обычно в сотни и более раз меньше быстродействия симметричных криптосистем с секретным ключом.

Комбинированный метод шифрования позволяет сочетать преимущества высокой секретности, предоставляемые асимметричными криптосистемами с открытым ключом, с преимуществами высокой скорости работы, присущими симметричным криптосистемам с секретным ключом. При таком подходе криптосистема с открытым ключом применяется для шифрования, передачи и последующего расшифрования только секретного ключа симметричной криптосистемы. А симметричная криптосистема применяется для шифрования и передачи исходного открытого текста. В результате криптосистема с открытым ключом не заменяет симметричную криптосистему с секретным ключом, а лишь дополняет ее, позволяя повысить в целом защищенность передаваемой информации. Если пользователь А хочет передать зашифрованное комбинированным методом сообщение М пользователю В, то порядок его действий будет таков.

1. Создать (например, сгенерировать случайным образом) симметричный ключ, называемый в этом методе сеансовым ключом К S .

2. Зашифровать сообщение М на сеансовом ключе К S .

3. Зашифровать сеансовый ключ К S на открытом ключе К В пользователя В.

4. Передать по открытому каналу связи в адрес пользователя В зашифрованное сообщение вместе с зашифрованным сеансовым ключом.

Действия пользователя В при получении зашифрованного сообщения и зашифрованного сеансового ключа должны быть обратными:

5. Расшифровать на своем секретном ключе k В сеансовый ключ К S .

6. С помощью полученного сеансового ключа К S расшифровать и прочитать сообщение М.

При использовании комбинированного метода шифрования можно быть уверенным в том, что только пользователь В сможет правильно расшифровать ключ К S и прочитать сообщение М. Таким образом, при комбинированном методе шифрования применяются криптографические ключи как симметричных, так и асимметричных криптосистем. Очевидно, выбор длин ключей для каждого типа криптосистемы следует осуществлять таким образом, чтобы злоумышленнику было одинаково трудно атаковать любой механизм защиты комбинированной криптосистемы.

В следующей таблице приведены распространенные длины ключей симметричных и асимметричных криптосистем, для которых трудность атаки полного перебора примерно равна трудности факторизации соответствующих модулей асимметричных криптосистем (Schneier B. Applied Cryptography. – John Wiley & Sons, Inc., 1996.– 758 p).

Как бы ни была сложна и надежна сама криптосистема, она основана на использовании ключей. Если для обеспечения конфиденциального обмена информацией между двумя пользователями процесс обмена ключами три­виален, то в системе, где количество пользователей составляет десятки и сотни управление ключами, – это серьезная проблема.

Под ключевой информацией понимается совокупность всех действую­щих в системе ключей. Если не обеспечено достаточно надежное управле­ние ключевой информацией, то, завладев ею, злоумышленник получает не­ограниченный доступ ко всей информации.

Управление ключами – информационный процесс, включающий в себя три элемента:

    генерацию ключей;

    накопление ключей;

    распределение ключей.

Генерация ключей. В реальных системах используются специальные аппаратные и программные методы генерации случайных ключей. Как правило используют датчики случайных чисел. Однако степень случайности их генерации должна быть достаточно высокой. Идеальными генераторами являются устройства на основе “натуральных” случайных процессов. Напри­мер, генерация ключей на основе белого радиошума. Другим случайным математическим объектом являются десятичные знаки иррациональных чисел, например  или е, которые вычисляются с помощью стандартных математических методов.

В системах со средними требованиями защищенности вполне приемлемы программные генераторы ключей, которые вычисляют случайные числа как сложную функцию от текущего времени и (или) числа, введенного пользователем.

Накопление ключей. Под накоплением ключей понимается организация их хранения, учета и удаления.

Поскольку ключ является самым привлекательным для злоумышленника объектом, открывающим ему путь к конфиденциальной информации, то во­просам накопления ключей следует уделять особое внимание.

Секретные ключи никогда не должны записываться в явном виде на но­сителе, который может быть считан или скопирован.

В достаточно сложной системе один пользователь может работать с большим объемом ключевой информации, и иногда даже возникает необхо­димость организации минибаз данных по ключевой информации. Такие ба­зы данных отвечают за принятие, хранение, учет и удаление используемых ключей.

Каждая информация об используемых ключах должна храниться в за­шифрованном виде. Ключи, зашифровывающие ключевую информацию на­зываются мастер-ключами. Желательно, чтобы мастер-ключи каж­дый пользователь знал наизусть и не хранил их вообще на каких-либо мате­риальных носителях.

Очень важным условием безопасности информации является периодиче­ское обновление ключевой информации в системе. При этом переназначать­ся должны как обычные ключи, так и мастер-ключи. В особо ответственных системах обновление ключевой информации необходимо производить ежедневно.

Вопрос обновления ключевой информации связан и с третьим элементом управления ключами – распределением ключей.

Распределение ключей. Распределение ключей – самый ответственный процесс в управлении ключами. К нему предъявляются два требования:

    оперативность и точность распределения;

    скрытность распределяемых ключей.

В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в системе требует но­вых эффективных решений.

Распределение ключей между пользователями реализуются двумя раз­ными подходами:

1 Путем создания одного или нескольких центров распределения клю­чей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены, и это позволяет читать все сооб­щения, циркулирующие в системе. Возможные злоупотребления существен­но влияют на защиту.

2 Прямой обмен ключами между пользователями системы. В этом слу­чае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов.

В обоих случаях должна быть гарантирована подлинность сеанса связи. Это можно обеспечить двумя способами:

1 Механизм запроса-ответа, который состоит в следующем. Если поль­зователь А желает быть уверенным, что сообщения, которые он получает от пользователя В, не являются ложными, он включает в посылаемое для В со­общение непредсказуемый элемент (запрос). При ответе пользователь В должен выполнить некоторую операцию над этим элементом (например, до­бавить 1). Это невозможно осуществить заранее, так как не известно, какое случайное число придет в запросе. После получения ответа с результатами действий пользователь А может быть уверен, что сеанс является подлин­ным. Недостатком этого метода является возможность установления, хотя и сложной, закономерности между запросом и ответом.

2 Механизм отметки времени. Он подразумевает фиксацию времени для каждого сообщения. В этом случае каждый пользователь системы может знать, насколько “старым” является пришедшее сообщение.

В обоих случаях следует использовать шифрование, чтобы быть уверенным, что ответ послан не злоумышленником и штемпель отметки времени не изменен.

При использовании отметок времени встает проблема допустимого вре­меннόго интервала задержки для подтверждения подлинности сеанса. Ведь сообщение с отметкой времени в принципе не может быть передано мгно­венно. Кроме этого, компьютерные часы получателя и отправителя не могут быть абсолютно синхронизированы.

Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA.

Но весьма эффективным оказался алгоритм Диффи-Хелмана, позволяющий двум пользователям без посредников обменяться ключом, который может быть использован затем для симметричного шифрования.

Алгоритм Диффи-Хеллмана. Диффи и Хелман предложили для создания криптографических систем с открытым ключом функцию дикретного возведения в степень.

Необратимость преобразования в этом случае обеспечивается тем, что достаточно легко вычислить показательную функцию в конечном поле Галуа, состоящим из p элементов (p – либо простое число, либо простое в любой степени). Вычисление же логарифмов в таких полях – значительно более трудоемкая операция.

Для обмена информацией первый пользователь выбирает случайное число x 1 , равновероятное из целых чисел от 1 до p – 1. Это число он держит в секрете, а другому пользователю посылает число y 1 = , где α – фиксированный элемент поля ГалуаGF (p ), который вместе с p заранее распространяется между пользователями.

Аналогично поступает и второй пользователь, генерируя x 2 и вычислив y 2 , отправляя его первому пользователю. В результате этого они оба могут вычислить общий секретный ключ k 12 =
.

Для того, чтобы вычислить k 12 , первый пользователь возводит y 2 в степень x 1 и находит остаток от деления на p . То же делает и второй пользователь, только используя y 1 и x 2 . Таким образом, у обоих пользователей оказывается общий ключ k 12 , который можно использовать для шифрования информации обычными алгоритмами. В отличие от алгоритма RSA, данный алгоритм не позволяет шифровать собственно информацию.

Не зная x 1 и x 2 , злоумышленник может попытаться вычислить k 12 , зная только перехваченные y 1 и y 2 . Эквивалентность этой проблемы проблеме вычисления дискретного логарифма есть главный и открытый вопрос в системах с открытым ключом. Простого решения до настоящего времени не найдено. Так, если для прямого преобразования 1000-битных простых чисел требуется 2000 операций, то для обратного преобразования (вычисления логарифма в поле Галуа) – потребуется около 1030 операций.

Как видно, при всей простоте алгоритма Диффи-Хелмана, его недостатком по сравнению с системой RSA является отсутствие гарантированной нижней оценки трудоемкости раскрытия ключа.

Кроме того, хотя описанный алгоритм позволяет обойти проблему скрытой передачи ключа, необходимость аутентификации остается. Без дополнительных средств, один из пользователей не может быть уверен, что он обменялся ключами именно с тем пользователем, который ему нужен.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.