Высокочувствительный микрофон своими руками. Самодельный сверхчувствительный микрофонный усилитель

Сложность выбора микрофона под вокал заключается в неоднозначности характеристик данного устройства с точки зрения раскрытия индивидуальных голосовых качеств исполнителя. В идеале каждый пользователь стремится выбирать модель, которая бы наилучшим образом подчеркивала достоинства его вокала и также скрывала недостатки. Определить, насколько конкретный микрофон сможет справиться с этой задачей, не так просто. Более того, даже покупка дорогостоящей премиальной версии с передовыми рабочими показателями не будет гарантией его эффективной работы в разных условиях применениях. И все же выбрать оптимальный микрофон для вокала можно, если в комплексе учитывать его эксплуатационные свойства, не забывая о функциональных особенностях и конструкционной эргономике.

Основные критерии выбора

Рабочие свойства микрофона дают понять, насколько точно может раскрыть вокальные данные конкретная модель. Это не означает, что он позволит лучшим образом их отразить, но сам факт наличия такого потенциала является основой для выбора. Итак, внимание рекомендуется обращать на такие показатели, как чувствительность, амплитудно-частотный диапазон и особенности направленности. Это главные характеристики, которыми отличаются микрофоны вокальные разных моделей. На практике эти параметры могут влиять на детализацию звучания, отсутствие или присутствие завалов отдельных частот, стабильность поддержки громкости и т. д.

Амплитудно-частотный спектр в аудиоаппаратуре чаще всего представлен одинаковыми значениями, поэтому особого внимания на эту величину не обращают. Тем не менее в случае с микрофонами важна каждая деталь и учет импульсной частотной характеристики имеет большое значение. Например, если выбирается микрофон для записи вокала, то эта характеристика определит, насколько эффективной будет реакция устройства на электрические импульсы. В совокупности чувствительность, частотный спектр и тип направленности прибора обеспечат тот или иной характер взаимодействия не только исполнителя с микрофоном, но и связку с дополнительным оборудованием. Не стоит забывать, что в процессе записи и воспроизведения участвует также другая специализированная техника. Микрофон как минимум должен соответствовать качественными характеристиками основному оборудованию. И напротив, если был приобретен высококачественный современный микрофон, то его функция может быть неэффективной при использовании в комплексе с бюджетной аппаратурой. Например, эксплуатационные показатели могут не раскрыться, даже если используется дешевый акустический кабель.

Чувствительность микрофона

От чувствительности зависит уровень напряжения, которое формируется на выходе микрофона в процессе звукового воздействия. Иными словами, это электрическая отдача акустического импульса, получаемая в момент исполнения вокальных партий. Обычно для оценки этого показателя используется понятие звукового давления, но специалисты все же рекомендуют использовать комплексный подход, то есть учитывать и частоту синусоидального сигнала звуковой волны, и выходное напряжение. Как же влияет чувствительность микрофона на качество его работы? На первый взгляд может показаться, что высокое значение как таковое свидетельствует о возможности раскрытия широкого потенциала вокальных данных. Но это не совсем так, и как раз чувствительность демонстрирует обманчивость высоких эксплуатационных показателей как прибора.

Чувствительность лишь дает информацию о способности устройства улавливать сигнал с той или иной силой, что будет выражаться в мощности обратной отдачи с воспроизведением звука. Однако качество работы микрофона именно с точки зрения акустических свойств в минимальной степени зависит от чувствительности, поскольку высокую степень восприимчивости мембраны могут свести к нулю искажения и помехи, значимость которых также возрастает. Несмотря на для вокала должен подбираться с учетом оптимального показателя чувствительности. Если планируется выступление на сцене, то этот показатель должен быть высоким, но для студии звукозаписи нет потребности в усилении восприимчивости. К слову, для универсальных нужд оптимальным выбором станет цифровая модель, так как она позволяет гибко настраивать величину чувствительности под конкретные задачи и условия применения устройства.

Учет параметров направленности

В некотором смысле с чувствительностью связана и направленность микрофона. Показатель чувствительности, как уже отмечалось, выражает способность устройства улавливать силу далее преобразуя ее в напряжение. Диаграмма направленности, в свою очередь, указывает на то, с какой именно стороны прибор воспринимает сигнал наилучшим образом. Например, всенаправленные микрофоны вокальные одинаково работают с боковой чувствительностью, в обработке передних и задних звуковых волн. Двунаправленные модели обычно ориентируются на работу с боковыми сторонами, но не воспринимают сигналы спереди и с заднего направления.

Наиболее популярны однонаправленные модификации, в которых предусматривается три диаграммы направленности на выбор. Что это значит на практике? Это схемы захвата звучания, которые представлены кардиоидной, суперкардиоидной и гиперкардиоидной моделями диаграмм. При этом все три варианта нечувствительны к внеосевому и заднеосевому звучанию, которое исходит от источников, расположенных позади или сбоку. Например, традиционная диаграмма кардиоидного типа по своей форме охвата напоминает сердце. В такой конфигурации устройство игнорирует звуки в передней зоне и отчасти - сбоку. Гиперкардиоидная и суперкардиоидная конфигурации отличаются тем, что оставляют узкие зоны охвата звукового спектра сбоку и в передней части. Современный микрофон для вокала в некоторых исполнениях предусматривает и возможность настройки зон чувствительности. Это круговые или мультидиаграммные модели, которые позволяют переключать устройство на разные направления захвата в зависимости от условий применения - например, в студии или на сцене.

Частотный диапазон

Амплитудно-частотный спектр определяет коридор величин, в рамках которых будет формироваться выходной сигнал. На данный момент сегмент вокальных моделей представляет устройства, работающие в диапазоне 80 Гц - 15 кГц. Это оптимальный спектр именно для вокального прибора. Если же требуется профессиональный микрофон для вокала, том-томов и малых барабанов, то лучше обращаться к версиям с диапазоном от 50 Гц. Аппараты, работающие с частотами от 30 Гц, уже относятся не просто к профессиональным, а к специализированным, которые используются для нестандартных задач звукозаписи.

Частотный спектр может быть связан с чувствительностью. Так, если восприимчивость сигнала определяет, насколько микрофон способен улавливать ходящий сигнал, то частотный спектр свидетельствует о способности прибора работать с передачей выходного сигнала в разных уровнях. Это очень важная зависимость именно в плане индивидуального выбора. Даже при номинальной поддержке вышеупомянутого спектра разные микрофоны по-своему могут обрабатывать частоты. Одни модели лучше работают с верхними диапазонами, а другие - с нижними. Причем громкость микрофона как средство коррекции показателей частотной обработки и воспроизведения не поможет. Значение имеет именно базовый потенциал способностей справляться с пиками и спадами выходного сигнала. Также следует учитывать так называемый эффект близости. Он выражается в том, что по мере приближения микрофона к источнику звучания низкий спектр частот становится более детальным и глубоким. По сути, это явление относится к искажениям, но в некоторых случаях звукоинженеры используют его именно как дополнительный акустический эффект.

Динамический или ленточный микрофон для вокала?

Рабочую основу представляет комбинация катушки индуктивности и чувствительного элемента в виде мембраны. В процессе воздействия звукового сигнала происходит изменение напряжения в катушке под действием и самой мембраны с ее колебаниями. Причем катушка работает в условиях постоянного действия магнитного поля. Это оптимальный микрофон для голоса, который рассчитан на использование в рамках концертов. Конструкция отличается массивностью корпуса и наличием специального крепления для удержания в руке. Что касается рабочих свойств, то они ориентируются на живую запись с игнорированием внеосевых звуков.

Модели ленточного типа, напротив, имеют хрупкую конструкцию и более чувствительную внутреннюю начинку, которая ориентируется на более точную и детализированную обработку сигналов. Вместо мембраны в таком микрофоне используется тонкая лента, за счет колебаний которой и происходит изменение показателей напряжения. Работа ленточного устройства характеризуется мягкой восприимчивостью, что позволяет с большей эффективностью применять его в звукозаписи, причем не только голоса, но и музыкальных инструментов. Впрочем, микрофон для студийной записи можно найти и в линейках с динамическими моделями. Обычно это универсальные устройства, благодаря настройкам которых можно решать разные задачи.

Если говорить о работе с записью инструментальных звуков, то обращать внимание стоит и на специализированные модификации. Например, те же динамические микрофоны выпускаются в версиях для барабанов, том-томов, духовых инструментов и т. д. Обычно такие модификации обеспечиваются широким спектром параметров регуляции, как в показателе чувствительности, так и по направленности захвата сигнала.

Чем отличается конденсаторный микрофон для сцены?

Данная версия вокального микрофона в своей внутренней конструкции предусматривает содержание чувствительной тонкой ленты и металлической пластины. Такая комбинация и образует своего рода конденсатор, на который от сетевого источника или аккумулятора подается заряд. Непосредственно колебания напряжения происходят за счет взаимодействия вибрирующей ленты и пластины. Это хороший микрофон для звукозаписи в студии, но в открытых концертных площадках он проявляет себя не лучшим образом. При этом существуют разные модификации Например, пользуется популярностью целая линейка устройств, рассчитанных на работу с музыкальными инструментами - от струнных до ударных.

В некоторых исполнениях конденсаторные устройства дополняются специальными переключателями, расширяющими акустические возможности прибора. Так, система roll-off предназначена для коррекции частотного диапазона на низком уровне. Также с его помощью при необходимости можно понижать чувствительность - эта функция особенно важна при использовании микрофона в студии. Но следует учитывать, что дополнительная оснастка опциями повышает и ценник модели. Ответ на вопрос о том, сколько стоит микрофон с переключателем roll-off, может предполагать суммы порядка 40-50 тыс. руб. Правда, это касается продукции известных фирм, славящихся хорошим качеством. Распространены и широкомембранные конденсаторные модели. Эти версии отличаются крупной конструкцией и большим диаметром мембран порядка 3 см. Они также предназначены для звукозаписи, но по большей части в любительских нуждах.

Модель Shure SM-58

Американская компания Shure относится к лидерам в сегменте производства звукового оборудования. В данном случае рассматривается модель динамического микрофона SM-58, которая подходит для использования на концертах и в студийной звукозаписи. Данный микрофон «Шур» хорош не только основными рабочими характеристиками, но и эргономикой конструкции. Разработчики этой фирмы традиционно выпускают компактные ручные модели с удобными формами и эта версия полностью укладывается в концепцию комфортного минимализма.

Что касается акустических возможностей, то начинка заточена на глубокую обработку всех основных оттенков голоса. Устройство работает с кардиоидной диаграммой направленности, что позволяет рационально разграничивать области целевого и стороннего звучания. Частотный диапазон варьируется от 50 Гц до 15 кГц. Данный спектр позволяет рассчитывать на раскрытие возможностей вокала с ясным и прозрачным звучанием. Вопрос о том, сколько стоит микрофон в этом исполнении, также не разочарует поклонников марки: ценник в среднем составляет 10 тыс., что неплохо для качественного устройства такого уровня. Особенно если учесть наличие технологических особенностей, которые выражаются и в оригинальной конструкции, и в устройстве коммутационных систем.

Модель Neumann U 87 Ai

Высококачественная и технологичная модель, предназначенная для профессиональной Данное устройство некоторые специалисты рассматривают как эталон студийных микрофонов на сегодняшний день. Аппарат отличается несколькими диаграммами направленности, среди которых круговая, восьмиобразная и кардиоидная. И если микрофон «Шур» в модификации SM-58, скорее, рассчитан на использование одного определенного спектра охвата звука, то в данном случае пользователь может с помощью селектора выбирать наиболее подходящую конфигурацию по узким направлениям. Кроме того, предусматривается и возможность выполнения среза частот и понижения сигнала. Это касается обработки нижнего спектра.

Если говорить о конструкционных особенностях, то они выражаются в увеличенном размере мембраны, применении разъема нового поколения XLR3F, а также в отключаемом аттенюаторе на 10 дБ. Данная модель оптимально подойдет и для любительских задач, поскольку эргономика настройки и управления реализована по традиционной схеме. Но, есть и недостаток, которым обладает этот микрофон. Цена устройства составляет порядка 220-230 тыс. По этой причине данную модификацию в основном применяют крупные музыкальные студии и телекомпании, которым необходимо обеспечивать высококачественное чистое звучание.

Модель Sennheiser MK 8

Немецкий производитель Sennheiser, скорее, известен традиционным акустическим оборудованием, а также наушниками для профессионального и любительского использования. Но и удачные микрофоны нередко появляются в семействах данной марки. В частности, хороший микрофон в исполнении MK 8 можно использовать и в домашних условиях, и в студийной записи. Это конденсаторная модель с двойной диафрагмой, характеризующаяся точной и мягкой трансляцией звучания. Для максимального раскрытия вокальных данных разработчики предусмотрели возможность использования круговой, расширенной, суперкардиоидной и стандартной кардиоидной конфигураций направленности.

Примечательна и другая особенность модели. Дело в том, что пользователь MK 8 получает возможность адаптации микшера любого типа к аудиотракту через трехступенчатый аттенюатор. Вообще, набор аксессуаров в комплекте с данной моделью сделал устройство практически универсальным, во всяком случае, это касается каналов подключения модели к сторонней аппаратуре помимо микшера. Отдельного внимания также заслуживают и высококачественные системы фильтрации, которые при необходимости могут устранить и упомянутый эффект приближения к источнику звучания, и воздействие структурного шума. В целом же можно констатировать, что это технологичный, функциональный и просто качественный микрофон. Цена модели, правда, тоже немаленькая и составляет порядка 50 тыс.

Как выбрать оптимальный вариант?

В выборе микрофона сложно ориентироваться на конкретные характеристики, не имея четкого понимания о будущей эксплуатации устройства. Так, отличия в подходах к выбору обуславливаются не только сферой применения, но и тонкостями технической организации рабочего процесса. Значение имеет и способ подключения, и требования к записи, а также возможные внешние воздействия на конструкцию аппарата.

При этом в подборе устройства для универсальных нужд специалисты рекомендуют придерживаться усредненных характеристик, делая акцент все же на передовых технологиях. Например, стандартный разъем микрофона XLR для балансного подключения постепенно уступает место более выгодному формату XLR3F. Правда, подобные изменения преимущественно затрагивают именно аксессуары и внешнюю фурнитуру. Внутренняя начинка с конструкционным устройством тех же ленточных мембран сохраняет принципиальную конфигурацию с допуском незначительных корректировок. В любом случае рассчитывать на качественную реализацию технического устройства микрофона придется только в случае приобретения модели от крупного производителя. Даже если бюджетная модификация от малоизвестного изготовителя будет располагать схожими номинальными характеристиками, это вовсе не значит, что и на практике модель обеспечит то же качество звучания. Впрочем, бывают и такие исключения.

Это продолжение тем:

Эти темы я объединил в одну и, таким образом, получился новый пост, в котором пойдёт речь осверхчувствительном микрофонном усилителе, включающем в себя несколько электретных микрофонов и позволяющем улавливать слабые звуки на фоне акустического шума.Самодельный усилитель дополняется фильтром присутствия, а также применяется комбинированное включение электретных микрофонов.


Фильтр присутствия настроен в резонанс на частоту 3 – 4 кГц, благодаря этому речь становится более внятной и выделяется из уровня посторонних акустических шумов помещения или улицы. Применение фильтра повышает динамический диапазон приёмо-передающего тракта за счёт подавления шумов активных элементов, находящихся выше резонансной частоты фильтра, а также уменьшает уровень нелинейных искажений, выраженных в виде хрипов при громкой речи, из-за ослабления высших гармоник за полосой пропускания фильтра. Нередко такое звучание, с использованием фильтра присутствия, путают с компрессией звука, но не находят присущие ей искажения. Микрофон с такой коррекцией частотной характеристики меньше боялся порывов ветра, быстро освобождаясь от перегрузок, сохранял запись, а поэтому использовалсядля репортажа.

Полный звуковой диапазон восприятия звука составляет 20 Гц – 20 кГц, но для прослушивания музыкальных произведений достаточно иметь более узкую полосу частот 40 Гц – 15 кГц, а для воспроизведения речи её можно ограничить до 300 Гц – 6 кГц.

Само же человеческое ухо наиболее чувствительно к частоте около 3 кГц, то есть частотная характеристика уха будет обладать подъёмом на этой частоте, ориентируясь на максимальную плотность спектра в разговорной речи. Наверное, замечали, обычно это присуще женщинам, чтобы быть услышанными они прибегают к пищащему тембру окраски голоса,делая акцент на высокочастотные составляющие спектра речи. Такое звучание при сильном постороннем шуме распространяется на большие расстояния. Аналогию, заложенную природой, можно провести с плачем младенца, который разбудит любого.

Техническая сторона решается путём изготовления микрофонного усилителя с диапазоном пропускаемых частот 300 Гц – 6 кГц, а частотная характеристика усилителя имеет подъём 8 – 10 дБ на частоте около 3,5 кГц и спад после 6 кГц. Высокая линейность и стабильность параметров усилителя обеспечивается за счёт применения операционных усилителей (ОУ) М1, М2, благодаря чему выходной сигнал не подвергается ограничению до величины 1,25 вольт среднеквадратичного значения напряжения.

Минимальный уровень шумов достигается применением в первом каскаде усилителя на полевом транзисторе Т1 с дополнительной коррекцией частотной характеристики в области верхних частот, а также использования фильтра нижних частот на операционном усилителе М1, дополнительно ослабляющего собственный шум усилителя и акустики выше 6 кГц.

Схема рассчитана для работы с электретным микрофоном Мic. Используя комбинированную схему включения электретных микрофонов, мне удалось разобрать даже шёпот на уровне громкого разговора и постоянного акустического шума.

Напомню, что параллельное включение микрофонов уменьшает их собственный шум в 1,41 раза, что улучшает соотношение сигнал / шум, всего тракта, если рассматривать микрофоны как первый каскад усилителя, отвечающего за этот параметр. Последовательное включение микрофонов рассматривается как усилитель с динамической нагрузкой, который обеспечивает компрессию звукового сигнала.

Я использовал от двух до трёх пар включённых микрофонов. Дальнейшее увеличение количества микрофонов мало влияет на качество звука. Интересные результаты получились с использованием микрофонов разных типов, что значительно уменьшает неравномерность частотной характеристики и собственные шумы самих микрофонов, причём, чем хуже характеристики микрофонов, тем заметнее на слух изменения их параметров в лучшую сторону при комбинированном их соединении.

При использовании разных типов микрофонов их количество может оказаться нечётным. В этом случае их включение подбираю таким образом, чтобы в средней точке их соединения получилось около половины напряжения питания.

Конструкция.

Так как усилитель имеет большое входное сопротивление, то во избежание фона и наводок микрофоны следует распаивать в непосредственной близости входного каскада. Монтаж может быть выполнен как на деталях SMD , так и на электронных компонентах для объёмного монтажа. В последнем случае все соединения между электронными компонентами должны быть как можно короче.

Параметры усилителя.

Номинальное напряжение питания 5вольт.

Общий коэффициент усиления 100. Коэффициент усиления первого каскада 7,5.


Микрофоном называется электроакустический преобразователь звуковых колебаний в электрические сигналы. Еще недавно микрофоны были относительно редкими устройствами. Сегодня микрофоны - везде. У каждого в кармане есть смартфон, в котором устанавливают несколько микрофонов, иногда до четырех. Еще один микрофон - на руке, в смарт-часах. В iPhone 6 стоит три микрофона, а в iPhone 6S - даже четыре. Один прикладывают к уху при разговоре, другим пользуется при громкой связи, еще один используется для записи звука при съемке основной камерой. Один из микрофонов iPhone используется для шумоподавления. В режиме громкой связи могут использоваться сразу все четыре микрофона в зависимости от ориентации телефона.

В этой статье мы рассмотрим технические характеристики микрофонов и уделим особое внимание одной из основных характеристик - чувствительности, которую можно перевести из логарифмических единиц в линейные с помощью этого конвертера.

Производители микрофонов ежегодно выпускают миллиарды микрофонов. Первые микрофоны устанавливались в телефоны и радиопередатчики. Сейчас микрофоны используются в акустике (передача и преобразование в электрические сигналы и поток цифровой информации голоса, музыки, звуков естественного происхождения), а также для целей, не связанных с акустикой (в различных датчиках). В наши дни микрофоны используются во многих устройствах: телефонах, системах громкой связи, в аппаратуре радио- и телевизионного вещания, видеозаписи, в мегафонах, системах распознавания речи, системах устного перевода с участием человека-переводчика или (пусть не сегодня, но уже очень скоро) в полностью автоматизированных системах устного перевода.

Во многих системах микрофоны используются для целей, не связанных с акустикой. Это датчики для измерения расстояний, устройства, который могут включить и выключить различное оборудование в ответ на определенный звуковой сигнал, датчики, определяющие наличие определенных звуков, например детонационных стуков двигателей. При появлении детонационных стуков такие пьезоэлектрические датчики определяют их наличие, чтобы электронный блок управления смог принять меры для их предотвращения.

Классификация микрофонов

Существуют также специализированные микрофоны. Одним из примеров таких микрофонов являются гидрофоны, используемые для прослушивания и записи подводных звуков, например, издаваемых морскими млекопитающими или подводными лодками. Другими примерами являются контактные микрофоны и контактные пьезоэлектрические звукосниматели, которые улавливают звуковые колебания твердых объектов и, в то же время, плохо воспринимают колебания воздуха.

Микрофоны классифицируются по различным признакам:

Технические характеристики микрофонов

Какой тип микрофона выбрать для записи оркестра, певца, малого барабана или гитары? Кардиоидный, ненаправленный, а, может быть, остронаправленный высокочувствительный микрофон? А как насчет цены? Неужели микрофон за 20 тысяч долларов будет записывать звук в 200 раз лучше микрофона за 100 долларов или в 20 тысяч раз лучше микрофона за доллар (примерно столько стоят микрофоны, устанавливаемые в iPhone или недорогие компьютерные микрофоны). А что если я вам скажу, что микрофон-петличка за доллар, на котором даже нет названия, будет звучать намного лучше, чем Neumann за 20 тысяч, установленный на камере в пяти метрах от источника звука? Вполне возможно, что вы сможете ответить на эти вопросы, если научитесь читать и понимать технические характеристики микрофонов.

В качестве примера, рассмотрим характеристики кардиоидного динамического микрофона Shure PGA48:

  • Чувствительность на частоте 1 кГц без нагрузки: –53,5 дБВ/Па (2,10 мВ/Па) при эталонном уровне чувствительности 1 Па = 94 дБ SPL
  • Номинальный диапазон частот: 70–15000 Гц
  • Характеристика направленности: кардиоида
  • Модуль полного электрического сопротивления: 600 Ом
  • Выходной соединитель: трехполюсный профессиональный соединитель (вилка) типа XLR

Теперь рассмотрим характеристики микрофонов более подробно.

Чувствительность в децибелах и линейных единицах

Микрофон представляет собой преобразователь, который преобразует звуковое давление в электрическое напряжение на выходе. Его чувствительность представляет собой соотношение между входным звуковым давлением и выходным электрическим напряжением. Она показывает насколько хорошо микрофон выполняет эту функцию преобразования. Высокочувствительный микрофон создает более высокое напряжение для определенного звукового давления, а значит, требует меньшего усиления в микшере или устройстве записи звука. Однако чувствительность никак не влияет на общее качество микрофона.

Чувствительность можно выразить в удобных линейных единицах в виде отношения напряжения на выходе микрофона в милливольтах на разомкнутом выходе или на нагрузке в 1 кОм к давлению синусоидального звукового сигнала с частотой 1 кГц. Именно такой подход, впрочем, весьма непоследовательный, принят в российских ГОСТах, описывающих параметры микрофонов и их измерение. Часто используемые логарифмические единицы не очень понятны людям далеким от техники.

Чувствительность микрофона обычно (в Европе и Америке, но не по российскому ГОСТу) выражается в логарифмических единицах (децибелах) и обычно измеряется с помощью излучения сигнала синусоидальной формы частотой 1 кГц и давлением 1 паскаль (1 Па = 1 Н/м² = 10 дин/см² = 10 микробар, которое соответствует уровню эквивалентного звукового давления 94 дБ SPL. Некоторые изготовители микрофонов используют другой эталонный уровень чувствительности - 74 дБ SPL, который соответствует давлению 0,1 Па или 1 дин/см². Однако рекомендуется использовать 94 дБ SPL, так как уровень звукового давления 74 дБ SPL слишком близок к типичному уровню шума.

Величина сигнала, снимаемого с микрофона, является мерой его чувствительности. Чем она выше, тем больше чувствительность микрофона. В связи с очень большим диапазоном человеческого слуха и удобства для измерения звуков пользоваться логарифмической шкалой, чувствительность микрофонов часто измеряют в децибелах относительно эталонного уровня чувствительности в 1 В/Па. Это очень большой уровень, намного превышающий чувствительность любого микрофона, поэтому их чувствительность в децибелах выражается отрицательными значениями. В этом конвертере единиц измерения для перевода чувствительности в децибелах в линейные единицы мВ/Па и наоборот используются следующие формулы:

S dB re 1V/Pa = 20 log 10 (TFmV/Pa/1000 mV/Pa)

TF mV/Pa = 1000 mV/Pa × 10(S dB re 1V/Pa/20).

S dB относительно 1В/Па - чувствительность в децибелах относительно 1 В/Па,

TF мВ/Па - чувствительность в мВ/Па и

1000 мВ/Па = 1 В/Па - эталонный уровень чувствительности, равный напряжению 1 В, вырабатываемом микрофоном при действии на него звукового давления в 1 Па.

Логарифмическая чувствительность в децибелах с указанным эталонным уровнем является «абсолютной» величиной, то есть, ее всегда можно преобразовать в мВ/Па или любые иные линейные значения.

Почему именно 94 или 74 децибела можно увидеть во всех статьях, посвященных чувствительности микрофонов? Это связано с уровнем порога слышимости человека, равного 2 10⁻⁵ Н/м² или 20 мкПа для синусоидальной волны частотой 1 кГц. Именно такой самый тихий звук может обнаружить здоровый молодой человек. Уровень звукового давления в децибелах P SPL , измеренный по относительной шкале для давления 1 Па, часто используемого для измерения чувствительности микрофонов, определяется по формуле

P SPL = 20·Log₁₀(P/P₀),

где P = 1 Па и P₀ = 2·10⁻⁵ Па. То есть,

P SPL = 20·Log₁₀(1/2·10⁻⁵) = 93,979 dB.

Если же использовать в качестве опорного уровня давление не в 1 паскаль, а в 1 дин/см² = 2·10⁻⁴ Па, то имеем:

P SPL = 20·Log₁₀(1/2·10⁻⁴) = 73,979 дБ.

Отметим, что эти две величины отличаются ровно на 20 децибел. Отметим также, что 94 и 74 децибела - это абсолютные значения звукового давления, равного 1 Па и 1 дин/см² соответственно. .

Более высокие значения чувствительности в децибелах указывают на более высокую чувствительность, например, микрофон с чувствительностью в –50 дБ является более чувствительным, чем микрофон с чувствительностью –65 дБ. Чувствительность гидрофонов обычно выражают в децибелах относительно эталонного уровня 1 В/мкПа.

Несмотря на то, что чувствительность не является показателем качества микрофона, эта характеристика имеет особое значение при записи таких слабых звуков, как, например, движение эмбрионов в куриных яйцах. В то же время, если нужно записать звук кузнечного молота, то при использовании высокочувствительного микрофона входные каскады предусилителя или микшера скорее всего будут перегружены, что приведет к появлению искажений. В остронаправленных микрофонах («пушках») для записи звуков от удаленных источников используются высокочувствительные головки. В то же время в микрофонах для записи речи или вокала, которые находятся всего в нескольких сантиметрах от источника звука, например, в упомянутом выше Shure PG48, установлены микрофонные капсюли значительно меньше чувствительности. Чувствительность микрофона - только один показатель среди множества других, которые следует учесть при выборе микрофона для конкретной области применения.

В технических характеристиках микрофонов чувствительность обычно указывается для разомкнутой цепи , то есть без нагрузки. Есть несколько причин измерения чувствительности именно таким образом. Во-первых, в этом случае можно рассчитать, как будет работать микрофон на любую нагрузку. Для этого нужно знать всего две величины: чувствительность без нагрузки и полное выходное сопротивление микрофона. Во-вторых, в современном оборудовании для обработки и усиления звука для эффективного использования микрофоны всегда подключают к высокоомной нагрузке, например, 200-омный микрофон следует подключать к нагрузке сопротивлением не менее 2 кОм. Тогда можно считать, что микрофон работает на разомкнутую цепь. Чувствительность для разомкнутой цепи удобна также для сравнения чувствительности различных микрофонов.

При сравнении чувствительности микрофонов различных изготовителей следует учитывать какие эталонные уровни чувствительности используются в характеристиках - упомянутые выше 94 или 74 дБ SPL. Например, взятый в качестве примера микрофон Shure PGA48, имеет чувствительность 2,1 мВ/Па, что соответствует чувствительности –73,5 дБ относительно 1В/дин см² и –53,5 дБ относительно 1 В/Па. Видно, что разность величин чувствительности в децибелах равна точно 20 дБ. Таким образом, для сравнения чувствительности микрофонов различных изготовителей можно воспользоваться нашим конвертером для преобразования различных значений к одному эталонному уровню чувствительности.

Ниже в таблице приведены типичные значения чувствительности микрофонов с различными типами преобразователей в дБВ/Па и мВ/Па.

Чувствительность по мощности

В литературе, посвященной динамическим микрофонам, выпущенной до середины прошлого века, да и в характеристиках самих микрофонов той поры можно найти характеристики чувствительности микрофонов по мощности, которые были приняты на заре развития радиовещания, когда была в ходу концепция согласования входного и выходного импеданса. В соответствии с этой концепцией, микрофон должен был подключаться к нагрузке с импедансом, равным внутреннему импедансу микрофона. Позже была принята идея согласования по напряжению, и она остается актуальной для микрофонов и усилителей и сейчас. То есть, сейчас считается, что импеданс любого предусилителя должен быть не менее, чем на порядок (в десять раз) выше, чем внутреннее сопротивление микрофона. Поэтому концепция чувствительности микрофона по мощности представляет исключительно исторический интерес и здесь не обсуждается.

Полоса воспроизводимых частот

График частотной характеристики показывает полосу воспроизводимых микрофоном частот в области 20 Гц - 20 кГц, то есть в диапазоне слуха человека. Часто на этом графике имеются кривые для различного расстояния от микрофона до источника звука. Диаграмма получена в результате тестирования микрофона в звукомерной (безэховой) камере, которая обеспечивает полное поглощение отраженных звуков. Испытуемый микрофон помещается перед калиброванным громкоговорителем, излучающим розовый шум, спектральная плотность которого затухает на 3 дБ на каждую октаву. Выходной сигнал микрофона анализируется и результаты анализа выдаются в форме графика частотной характеристики, на горизонтальной оси которого в логарифмическом масштабе указывается частота, а на вертикальной - относительный уровень сигнала в децибелах.

Характеристика направленности

Характеристика (диаграмма) направленности микрофона показывает зависимость чувствительности микрофона к направлению падения звуковой волны относительно его акустической оси. Обычно эту характеристику представляют в полярных координатах, в которых каждая точка на плоскости определяется расстоянием от начала координат до этой точки (полярным радиусом) и углом между нулевым направлением и направлением на эту точку (азимутом). Наиболее часто применяются ненаправленные микрофоны или направленные микрофоны с диаграммой направленности в полярных координатах в форме кардиоиды, субкардиоиды, гиперкардиоиды и суперкардиоиды. Имеются также двунаправленные микрофоны с диаграммой направленности в форме объемной восьмерки.

Полное внутреннее (выходное) сопротивление

Модуль полного внутреннего электрического сопротивления (импеданс) описывает сопротивление магнитной катушки или мембраны в случае ленточного микрофона, или выходное сопротивление предусилителя в случае конденсаторного микрофона. Диапазон значений модуля полного внутреннего сопротивления у разных типов микрофонов велик - от 1 ома у ленточного микрофона до десятков и сотен мегаом у конденсаторных микрофонов. Впрочем, в конденсаторных микрофонах всегда имеется внутренний предусилитель, выходное сопротивление которого значительно (на несколько порядков) меньше выходного сопротивления самой головки конденсаторного микрофона.

До середины пятидесятых годов прошлого века инженеры, занимающиеся вопросами звукозаписи, согласовывали импедансы микрофонов и усилителей. Однако в наши дни никто больше не озабочен вопросами согласования импедансов микрофонов с усилителями, так как обычно полное внутреннее выходное сопротивление самого микрофона или его предусилителя относительно низкое, в то время как входное сопротивление усилителя мощности или микшера относительно высокое (обычно выше более, чем на порядок).

Тепловой шум и эквивалентный уровень шума

Мы хорошо слышим тихий шипящий шум микрофонов и усилителей (не путать с сетевым гулом!), который представляет собой тепловой шум, являющийся результатом броуновского движения ионизированных молекул в проводнике, обладающем электрическим сопротивлением. Этот шум всегда присутствует и избавиться от него невозможно. Современные микрофоны имеют модуль полного внутреннего сопротивления 150–300 Ом и это сопротивление генерирует тепловой шум и при полном отсутствии звукового сигнала. Полупроводниковые приборы и резисторы усилителей, к которым подключаются микрофоны, также генерируют шум, который также невозможно устранить, но можно несколько уменьшить различными способами. Низкий уровень шума особенно полезен, когда приходится работать с очень тихими звуками, так как такие звуки могут «утонуть» в неизбежном шуме микрофона и усилителя.

Собственный шум микрофонов обычно приводится в их характеристиках в форме отношения сигнал-шум в децибелах или в форме величины собственного шума , которая указывается как эквивалентный уровень шума . Например, собственный шум конденсаторного микрофона iSK BM-800 равен 16 дБ(А). Здесь в децибелах с весовым фильтром А (дБ(А)) измеряется уровень звукового давления со взвешивающим фильтром типа А относительно звукового давления 20 мкПа, соответствующего порогу слышимости человека. А-фильтр предназначен для измерения относительно тихих звуков и для фильтрации низкочастотных шумов. При такой методике измерения собственных шумов хорошими считаются результаты ниже 15 дБ(А). Имеется и другая методика измерения шума, при использовании которой хорошими шумовыми характеристиками обладают микрофоны, если результат измерений менее 30 дБ.

Уровень предельного звукового давления

При записи звука необходимо знать какой предельный уровень звукового давления может выдержать используемый микрофон без превышения установленного в нормативно-технической документации суммарного коэффициента гармонических искажений (обычно 0,5, 1 или 3%) и, конечно, без ограничения сигнала, при котором синусоида превращается в меандр. 0,5-процентные искажения можно измерить, но нельзя услышать. Например, уровень предельного звукового давления микрофона iSK BM-800 равен 132 дБ на частоте 1 кГц при суммарном коэффициенте гармонических искажений 1%.

Динамический диапазон

Динамический диапазон микрофона определяется как диапазон звуковых давлений в децибелах, верхний предел которого ограничен уровнем предельного звукового давления, а нижний - эквивалентным уровнем собственного шума, измеренного с фильтром типа А. В нашем примере конденсаторного микрофона iSK BM-800 динамический диапазон можно рассчитать как 132 дБ – 16 дБ = 116 дБ. Следует отметить, что многие изготовители микрофонов не указывают динамический диапазон в технических характеристиках своих изделий.

Эффект близости

Каждый направленный микрофон характеризуется эффектом близости, который выражается в подчеркивании нижних частот при приближении источника звукового сигнала близко к микрофону. У ненаправленных микрофонов эффект близости отсутствует, в то время как у кардиоидных динамических вокальных микрофонов наблюдается усиление нижних частот до 16 дБ и даже более, если вокалист касается микрофона губами. Эффект близости обычно показывается на частотных характеристиках микрофонов в форме отдельных кривых с указанием расстояния от микрофона до источника звука. Ведущие радиопередач часто используют эффект близости для придания глубины своему голосу. В то же время, этот эффект может ухудшить разборчивость речи.

Гармонические искажения

В акустике суммарный коэффициент гармонических искажений сигнала определяется как отношение суммы мощностей всех гармонических компонентов к мощности основной частоты и характеризует линейность аудиосистемы. Обычно он выражается в процентах. Если полные гармонические искажения невелики, то компоненты акустической системы (микрофон, предусилитель, микшер, усилитель мощности и громкоговоритель) позволяют точнее воспроизводить звук. Для калибровки микрофона используют испытательный громкоговоритель, который излучает чистый синусоидальный звуковой сигнал. Воздействующий на микрофон звуковой сигнал анализируется на наличие первых пяти гармоник основной частоты.

Тип микрофонного соединителя

В микрофонах для бытового употребления обычно используются телефонные стерео или моно соединители типа TRS с диаметром вилки 6,35 мм, 3,5 мм или 2,5 мм. В профессиональных микрофонах чаще всего используется трехполюсный соединитель XLR, предназначенный для передачи балансного аудиосигнала. Иногда применяются и другие соединители, например, в радиолюбительской или профессиональной аппаратуре связи.

Трехполюсный соединитель XLR, используемый для балансной передачи звукового сигнала по экранированной витой паре, заслуживает особого внимания. Он используется в абсолютном большинстве профессиональных микрофонов. Балансные линии позволяют использовать длинные кабели, так как они уменьшают восприимчивость кабелей к внешним электромагнитным помехам. Кабель имеет две жилы для передачи звукового сигнала - по одному проводу идет прямой сигнал от микрофона (контакт 2), по другому инверсный (противофазный), полярность которого противоположна прямому сигналу (контакт 3). Эти два провода подключаются к входу дифференциального усилителя, который усиливает разность напряжений между двумя балансными линиями и подавляет помехи, которые являются синфазными. Скрутка проводов уменьшает электромагнитные помехи, вызванные электромагнитной индукцией. Третий провод - экранная оплетка кабеля, подключаемая к контакту 1 соединителя XLR.

Выводы

Мы надеемся, что, прочитав эту статью, вы сможете читать и понимать технические характеристики микрофонов, сравнивать их и выбирать микрофон, который вам нужен для выполнения конкретной задачи. Однако помните, что характеристики дают только объективную информацию об электроакустических возможностях микрофона и не могут показать как микрофон будет звучать. Они не могут рассказать всё о качестве микрофона. Например, они определенно не расскажут о качестве пайки элементов на печатной плате предусилителя или о качестве изготовления мембраны капсюля конденсаторного микрофона.

А как же насчет цены? Тут стоит помнить, что известные изготовители микрофонов используют те же рассчитанные на снобизм методы привлечения далеких от техники покупателей, которые используют компании, выпускающие духи и модную одежду . «Микрофоны Neumann признаны профессионалами по всему миру! Их можно найти в любой уважающей себя студии звукозаписи! Если у тебя есть Neumann - ты настоящий профессионал!»

В. М. Сапожков. Акустика. М. - «Книга по требованию»

Твитнуть

Предисловие

Предложенный мной метод не бесплатен, зато он работает. Улучшение не подойдёт всем и каждому, потому что придётся потратить 2-3 тысячи рублей либо научиться читать электронные схемы и паять. Зато качество будет хорошим, позволит с комфортом говорить даже в паре метров от микрофона.

Проблема

У большинства дешёвых микрофонов чувствительность по умолчанию недостаточна для того, чтобы вас отчётливо слышали. Приходится кричать, но на постоянной основе так делать нельзя, оранье - занятие утомительное и вредное.

Внимательно изучив вопрос, я пришёл к выводу, что в ситуации виноваты производители, чрезмерно упрощающие конструкцию устройства. Отдав свои кровно заработанные 100-500 рублей, покупатель по сути получает модуль (капсюль) электретного микрофона без какой-либо электронной «обвязки».

Всякие гибкие ножки, прищепки - это опциональная мишура. Формально такие микрофоны работают, но их чувствительность и качество записи невысоки (слышен шум). Ничто не мешает добавить в схему несколько электронных компонентов, улучшив способность микрофона улавливать тихие звуки.

Схемы усилителей довольно просты, поэтому умеющие пользоваться паяльником люди переделывают микрофоны и наслаждаются жизнью.

Кстати, даже в дешёвых петличках за 100 рублей ставят неплохие электретные модули. Например, у меня есть микрофончик-прищепка Genius десятилетней давности, работает шикарно. После доработки, разумеется.

Кроме низкой чувствительности, на записях можно услышать негромкое шипение. Его можно подавить фильтрами в аудиоредакторе, но когда помехи слишком сильны, очистка от шума исказит полезную часть записи и голос зазвучит глухо, словно из бочки.

Шум (в 99% случаев это помехи от электромагнитных полей) появляется на нескольких этапах доставки звука:

  1. В электретном капсюле микрофона.
  2. В микрофонном предусилителе, если он имеется.
  3. При передаче сигнала по не экранированному от помех соединительному кабелю.
  4. В усилителе звуковой карты.

Наиболее больное место - звуковая карта компьютера. Замена на более качественную и/или вынос за пределы корпуса компьютера может избавить от шума, но не у всех есть деньги на подобный апгрейд.

Чаще всего пользователь остаётся один на один с дешёвым микрофоном, воткнутом в фоняще-шипящую звуковую карту, распаянную на материнской плате компьютера. Можно попытаться сделать звук громче программно.

Как программно усилить звук

Может оказаться, что звуковая карта в компьютере установлена хорошая. Тогда включение усиления микрофона поможет.

В свойствах найдите вкладку «Уровни», там будут настройки усиления звука.

Усиление микрофона на вкладке «Уровни». Не забудьте нажать ОК

В зависимости от драйвера звуковой карты вместо ползунков может быть опция «Mic boost» или вовсе ничего.

К сожалению, с полезным звуком усиливается шум.

Если не засовывать микрофон в рот и не включать усиление, тихая запись в аудиоредакторе выглядит так:

Те, кто работал в Audacity, сразу поймут: запись недостаточно громкая. Включаем усиление и… увы, вместе с голосом усилится шум:

Для общения по Скайпу это приемлемо. А если в драйвере можно включить фильтр шумоподавления, жизнь прекрасна. Пускай голос звучит словно из бочки - слова разобрать можно и ладно.

Но для записи подкастов, видеуроков и тем более вокала нужен хороший источник звука. Никто не захочет слушать постоянное «шшш» на фоне даже самого приятного голоса в мире.

Помните!

Усиление чувствительности микрофона не всегда способствует качественной записи: чем лучше слышны окружающие звуки, тем сильнее они зазвучат на записи. И если вы записываете подкаст в комнате с чирикающим попугайчиком, сильное усиление сигнала будет только мешать. Нужно поймать баланс между чувствительностью, шумом помех и фоновыми звуками так, чтобы при обработке от лишних элементов можно было избавиться.

Как правильно подключить микрофон

Чтобы добиться качественного звучания, нужно знать, как подключить микрофон к компьютеру. Не все понимают, что за разноцветные входы расположены на задней панели настольного компьютера. С ноутбуками проще: возле разъёмов всегда найдутся поясняющие значки, на настольных ПК это роскошь.

(Могут наличествовать разъемы для подключения дополнительных колонок, что отлично подходит для создания домашнего кинотеатра, они нам не нужны.)

Основных разъёма три: выход на колонки (наушники), микрофонный и линейный входы, каждому присвоен определённый цвет.

Зачем нужны микрофонный вход и выход на динамики/наушники, понятно из названия. А с линейным (Line in) ситуация интереснее. Он тоже предназначен для записи звука, но устроен проще.

На устройство, подключённое к микрофонному разъёму, подаётся напряжение (так называемое «фантомное питание»), а обратный сигнал проходит через усилитель. Отсюда и возникает шум на записи: во-первых, подаваемое питание имеет свою частоту, во-вторых, электронные компоненты звуковой карты ловят и делают громче все помехи и сигналы с микрофона и окружающих устройств.

Линейный вход фантомного питания не имеет, да и усилителя как такового нет. Сигнал нужен мощный, но зато при оцифровке сигнала примешивается минимум постороннего шума. Например, можно взять старый кассетный плеер и подключить к Line in его выход на наушники - так получится оцифровать аудиокассеты.

Электретные и конденсаторные микрофоны нельзя просто взять и подключить к линейному входу. Точнее, электретный заработает, но без питания он, будучи генератором очень слабого тока, выдаст слишком тихий звук, практически неслышимый.

Существует поверье, что качество записи зависит от того, есть ли у звуковой карты фантомное питание или нет. Это заблуждение. У разных моделей выдаваемое напряжение разное, но оно есть всегда. Чистота звука зависит от схемы усилителя, общей защищённости от помех и ряда других факторов. Сколько напряжения выдаёт карточка - дело десятое, электретным капсюлям много и не надо.

Что же делать? К чему знать эту заумь? А к тому, что существует два вида усилителей, способные повысить громкость звука, подключаемые либо к микрофонному, либо к линейному входам. И нужно понимать, какой вариант вам подходит.

  1. Встроенные в микрофон, питающиеся от идущего по микрофонному кабелю напряжения. Усиливают сигнал до 10 раз (в децибелах точно не могу сказать), сильно уязвимы для помех.
  2. Со внешним питанием от батареек или отдельного блока. Могут усиливать сигнал в 10-1000 раз и подключаются к линейному входу. Шум никуда не исчезает, но относительно полезного сигнала он в сотню раз тише, поэтому, подключив даже дешёвую сторублёвую петличку через усилитель, можно получить качественный звук.

То есть в идеале микрофон нужно подключить через усилитель к линейному входу и всё будет ОК.

Готовые усилители

Дорогие варианты рассматривать не буду, извините. Предполагается, что бюджет предельно ограничен.

Усилители для колонок/наушников не подойдут. Они недостаточно чувствительные, не подают фантомное питание на микрофон, а выходная мощность слишком большая даже для линейного входа.

На Алиэкспресс устройства нужно искать запросами «микрофонный предусилитель» и «предусилитель микрофона». Самые дешёвые варианты стоят полторы-две тысячи рублей. Предназначены для караоке, но, если не выкручивать на полную громкость, можно подключить к линейному входу.

За три тысячи рублей можно найти полноценный предусилитель, к которому еще и музыкальный инструмент подключается. Например, гитара со звукоснимателем.

Для подключения дешёвого компьютерного микрофона понадобится переходник 3.5 мм джек > 6.3 мм джек. У компьютера должен быть линейный вход.

И не стоит забывать про такое чудо, как конденсаторный микрофон BM 800, завоевавший голосовые связки ютуберов, обозревающих товары из китайшопов:

Уточняю: я не рекомендую его к покупке. Не совсем понятно, при каких условиях он нормально работает, слишком уж противоречивы отзывы. Но иногда ВМ 800 можно найти за 300-500 рублей, что не сильно дороже примитивных электретных, зато с предусилителем. Но подключается он к микрофонному входу, а значит - привет, помехи звуковой карты.

Делаем усилитель сами

Сразу предупреждаю: питать от блока питания самодельные микрофонные предусилители нежелательно - придётся городить отдельную схему для фильтрации питания от помех. А батарей хватит надолго и по части питания проблем не будет.

Готовый микрофонный модуль на микросхеме MAX9812

Самый простой вариант - купить микрофонный модуль для Ардуино на микросхеме MAX9812 (70 рублей), кабель (30 рублей), штекер 3,5 мм (15 рублей) и батарейку-таблетку CR-2032 (от 30 рублей). Компоненты обойдутся рублей в 150.

Платку можно превратить в полноценный микрофон, обладая минимальными навыками пайки или попросив спаять тех, кто умеет.

Рассмотрены схемы и конструкции высокочувствительных микрофонов в комплексе с самодельными малошумящими усилителями низкой частоты (УНЧ).

Конструирование чувствительного и малошумящего усилителя (УНЧ) имеет свои особенности. Наибольшее влияние на качество воспроизведения звуков и разборчивость речи оказывают амплитудно-частотная характеристика (АЧХ) усилителя, уровень его шумов, параметры микрофона (АЧХ, диаграмма направленности, чувствительность и т.д.) или заменяющих его датчиков, а также их взаимная согласованность с усилителем. Усилитель должен иметь достаточное усиление.

При использовании микрофона - это 60дб-80дб, т.е. 1000-10000 раз. Учитывая особенности приема полезного сигнала и его низкую величину в условиях сравнительно значительного уровня помех, которые существуют всегда, целесообразно в конструкции усилителя предусмотреть возможность коррекции АХЧ, те. частотной селекции обрабатываемого сигнала.

При этом необходимо учитывать, что наиболее информативный участок звукового диапазона сосредоточен в полосе от 300 Гц до 3-3.5 кГц. Правда, иногда с целью уменьшения помех эту полосу сокращают еще больше. Использование полосового фильтра в составе усилителя позволяет значительно увеличить дальность прослушивания (в 2 и более раз).

Еще большей дальности можно достичь использованием в составе УНЧ селективных фильтров с высокой добротностью, позволяющих выделять или подавлять сигнал на определенных частотах. Это дает возможность значительно повысить соотношение сигнал/шум.

Элементарная база

Современная элементная база позволяет создавать качественные УНЧ на основе малошумящих операционных усилителей (ОУ), например, К548УН1, К548УН2, К548УНЗ, КР140УД12, КР140УД20 и т.д.

Однако, несмотря широкую номенклатуру специализированных микросхем и ОУ, и их высокие параметры, УНЧ на транзисторах в настоящее время не потеряли своего значения. Использование современных, малошумящих транзисторов, особенно в первом каскаде, позволяет создать оптимальные по параметрам и сложности усилители: малошумящие, компактные, экономичные, рассчитанные на низковольтное питание. Поэтому транзисторные УНЧ часто оказываются хорошей альтернативой усилителям на интегральных микросхемах.

Для минимизации уровня шумов в усилителях, особенно в первых каскадах, целесообразно использовать высококачественные элементы. К таким элементам относятся малошумящие биполярные транзисторы с высоким коэффициентом усиления, например, КТ3102, КТ3107. Однако в зависимости от назначения УНЧ используются и полевые транзисторы.

Большое значение играют и параметры остальных элементов. В малошумящих каскадах электронных схем используют оксидные конденсаторы К53-1, К53-14, К50-35 и т. п., неполярные - КМ6, МБМ и т. п., резисторы - не хуже традиционных 5% МЛТ-0.25 и МЛ Т-0.125, лучший вариант резисторов - проволочные, безиндуктивные резисторы.

Входное сопротивление УНЧ должно соответствовать сопротивлению источника сигнала - микрофона или заменяющего его датчика. Обычно входное сопротивление УНЧ стараются сделать равным (или немного больше) сопротивлению источника-преобразователя сигнала на основных частотах.

Для минимизации электрических помех целесообразно для подключения микрофона к УНЧ использовать экранированные провода минимальной длины. Электретный микрофон МЭК-3 рекомендуется монтировать непосредственно на плате первого каскада микрофонного усилителя.

При необходимости значительного удаления микрофона от УНЧ следует использовать усилитель с дифференциальным входом, а подключение осуществлять витой парой проводов в экране. Экран подключается к схеме в одной точке общего провода максимально близко к первому ОУ. Это обеспечивает минимизацию уровня наведенных в проводах электрических помех.

Малошумящий УНЧ для микрофона на К548УН1А

На рисунке 1 представлен пример УНЧ на основе специализированной микросхемы - ИС К548УН1А, содержащей 2 малошумящих ОУ. ОУ и УНЧ, созданный на базе этих ОУ (ИС К548УН1А), рассчитаны на однополярное напряжение питания 9В - ЗОВ. В приведенной схеме УНЧ первый ОУ включен в варианте, который обеспечивает минимальный уровень шумов ОУ.

Рис. 1. Схема УНЧ на ОУ К548УН1А и варианты подключения микрофонов: а - УНЧ на ОУ К548УН1А, б - подключение динамического микрофона, в - подключение электретного микрофона, г - подключение удаленного микрофона.

Элементы для схемы на рисунке 1:

  • R1 =240-510, R2=2.4к, R3=24к-51к (подстройка усиления),
  • R4=3к-10к, R5=1к-3к, R6=240к, R7=20к-100к (подстройка усиления), R8=10; R9=820-1.6к (для 9В);
  • С1 =0.2-0.47, С2=10мкФ-50мкФ, С3=0.1, С4=4.7мкФ-50мкФ,
  • С5=4.7мкФ-50мкФ, С6=10мкФ-50мкФ, С7=10мкФ-50мкФ, С8=0.1-0.47, С9=100мкФ-500мкФ;
  • ОУ 1 и 2 - ОУ ИС К548УН1А (Б), два ОУ в одном корпусе ИС;
  • Т1, Т2 - КТ315, КТ361 или КТ3102, КТ3107 или аналогичные;
  • Т - ТМ-2А.

Выходные транзисторы данной схемы УНЧ работают без начального смещения (с Iпокоя=0). Искажения типа “ступенька" практически отсутствуют благодаря глубокой отрицательной обратной связи, охватывающей второй ОУ микросхемы и выходные транзисторы. При необходимости изменения режима выходных транзисторов (Iпокоя=0) схему необходимо соответствующим образом откорректировать: включить в схему резистор или диоды между базами Т1 и Т2, два резистора по 3-5к с баз транзисторов на общий провод и провод питания.

Кстати, в УНЧ в двухтактных выходных каскадах без начального смещения хорошо работают уже устаревшие германиевые транзисторы. Это позволяет использовать с такой структурой выходного каскада ОУ с относительно низкой скоростью нарастания выходного напряжения без опасности возникновения искажений, связанных с нулевым током покоя. Для исключения опасности возбуждения усилителя на высоких частотах используется конденсатор СЗ, подключенный рядом с ОУ, и цепочка R8С8 на выходе УНЧ (достаточно часто RC на выходе усилителя можно исключить).

Малошумящий микрофонный УНЧ на транзисторах

На рисунке 2 представлен пример схемы УНЧ на транзисторах . В первых каскадах транзисторы работают в режиме микротоков, что обеспечивает минимизацию внутренних шумов УНЧ. Здесь целесообразно использовать транзисторы с большим коэффициентом усиления, но малым обратным током.

Это могут быть, например, 159НТ1В (Iк0=20нА) или КТ3102 (Iк0=50нА), или аналогичные.

Рис. 2. Схема УНЧ на транзисторах и варианты подключения микрофонов: а УНЧ на транзисторах, б - подключение динамического микрофона, в - подключение электретного микрофона, г - подключение удаленного микрофона.

Элементы для схемы на рисунке 2:

  • R3=5.6к-6.8к (регулятор громкости), R4=3к, R5=750,
  • R6=150к, R7=150к, R8=33к; R9=820-1.2к, R10=200-330,
  • R11=100к (подстройка, Uэт5=Uэт6=1.5В),
  • R12=1 к (подстройка тока покоя Т5 и Т6, 1-2 мА);
  • С1=10мкФ-50мкФ, С2=0.15мкФ-1мкФ, С3=1800,
  • С4=10мкФ-20мкФ, С5=1мкФ, С6=10мкФ-50мкФ, С7=100мкФ-500мкФ;
  • Т1, Т2, Т3 -159НТ1 В, КТ3102Е или аналогичные,
  • Т4, Т5 - КТ315 или аналогичные, но можно и МП38А,
  • Т6 - КТ361 или аналогичные, но можно и МП42Б;
  • М - МД64, МД200 (б), МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

Использование подобных транзисторов позволяет обеспечить не только устойчивую работу транзисторов при малых коллекторных токах, но и достичь хороших усилительных характеристик при низком уровне шумов.

Выходные транзисторы могут использоваться как кремниевые (КТ315 и КТ361, КТ3102 и КТ3107, и т.п.), так и германиевые (МП38А и МП42Б и т.п.). Настройка схемы сводится к установке резистором R2 и резистором RЗ соответствующих напряжений на транзисторах: 1,5В - на коллекторе Т2 и 1,5В - на эмиттерах Т5 и Т6.

Микрофонный усилитель на ОУ с дифференциальным входом

На рисунке 3 представлен пример УНЧ на ОУ с дифференциальным входом . Правильно собранный и настроенный УНЧ обеспечивает значительное подавление синфазной помехи (60 дб и более). Это обеспечивает выделение полезного сигнала при значительном уровне синфазных помех.

Следует напомнить, что синфазная помеха - помеха, поступающая в равных фазах на оба входа ОУ УНЧ, например, помеха, наведенная на оба сигнальных провода от микрофона. Для обеспечения корректной работы дифференциального каскада необходимо точно выполнить условие: R1 =R2, R3=R4.

Рис.3. Схема УНЧ на ОУ с дифференциальным входом и варианты подключения микрофонов: а - УНЧ с дифференциальным входом, б - подключение динамического микрофона, в - подключение электретного микрофона, г - подключение удаленного микрофона.

Элементы для схемы на рисунке 3:

  • R7=47к-300к (подстройка усиления, К=1+R7/R6), R8=10, R9=1,2к-2.4к;
  • C1=0.1-0.22, C2=0.1-0.22, СЗ=4.7мкФ-20мкФ, C4=0.1;
  • ОУ - КР1407УД2, КР140УД20, КР1401УД2Б, К140УД8 или другие ОУ в типовом включении, желательно с внутренней коррекцией;
  • D1 - стабилитрон, например, КС133, можно использовать светодиод в обычном включении, например, АЛ307;
  • М - МД64, МД200 (б), МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

Резисторы целесообразно подобрать с помощью омметра среди 1%-резисторов с хорошей температурной стабильностью. Для обеспечения необходимого баланса рекомендуется один из четырех резисторов (например, R2 или R4) выполнить переменным. Это может быть высокоточный переменный резистор-подстроечник с внутренним редуктором.

Для минимизации шумов входное сопротивление УНЧ (значения резисторов R1 и R2) должно соответствовать сопротивлению микрофона или заменяющего его датчика. Выходные транзисторы УНЧ работают без начального смещения (с 1покоя=0). Искажения типа "ступенька” практически отсутствуют благодаря глубокой отрицательной обратной связи, охватывающей второй ОУ и выходные транзисторы. При необходимости схему включения транзисторов можно изменить.

Настройка дифференциального каскада: подать синусоидальный сигнал 50 Гц на оба входа дифференциального канала одновременно, подбором величины RЗ или R4 обеспечить на выходе ОУ 1 нулевой уровень сигнала 50 Гц. Для настройки используется сигнал 50 Гц, т.к. электросеть частотой 50 Гц дает максимальный вклад в суммарную величину напряжения помехи. Хорошие резисторы и тщательная настройка позволяют достичь подавления синфазной помехи 60дб-80дб и более.

Для повышения устойчивости работы УНЧ целесообразно зашунтировать выводы питания ОУ конденсаторами и на выходе усилителя включить RC-целочку (как в схеме усилителя на рисунке 1). Для этой цели можно использовать конденсаторы КМ6.

Для подключения микрофона использована витая пара проводов в экране. Экран подключается к УНЧ (только в одной точке!!) максимально близко от входа ОУ.

Улучшеные усилители для чувствительных микрофонов

Применение в выходных каскадах УНЧ низкоскоростных ОУ и эксплуатация кремниевых транзисторов в усилителях мощности в режиме без начального смещения (ток покоя равен нулю - режим В) может, как это уже отмечалось выше, привести к переходным искажениям типа “ступенька”. В этом случае для исключения данных искажений целесообразно изменить структуру выходного каскада таким образом, чтобы выходные транзисторы работали с небольшим начальным током (режим АВ).

На рисунке 4 представлен пример подобной модернизации приведенной схемы усилителя с дифференциальным входом (рисунок 3).

Рис.4. Схема УНЧ на ОУ с дифференциальным входом и с низким уровнем искажений выходного каскада.

Элементы для схемы на рисунка 4:

  • R1=R2=20к (равно или немного выше максимального сопротивления источника в рабочем диапазоне частот),
  • RЗ=R4=1м-2м; R5=2к-10к, R6=1к-Зк,
  • R7=47к-300к (подстройка усиления, К=1+R7/R6),
  • R8=10, R10=10к-20к,R11=10к-20к;
  • С1 =0.1-0.22, С2=0.1-0.22, СЗ=4.7мкФ-20мкФ, C4=0.1;
  • ОУ - К140УД8, КР1407УД2, КР140УД12, КР140УД20, КР1401УД2Б или другие ОУ в типовом включении и желательно с внутренней коррекцией;
  • Т1, Т2 - КТ3102, КТ3107 или КТ315, КТ361, или аналогичные;
  • D2, D3 - КД523 или аналогичные;
  • М - МД64, МД200, МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

На рисунке 5 представлен пример УНЧ на транзисторах . В первых каскадах транзисторы работают в режиме микротоков, что обеспечивает минимизацию шумов УНЧ. Схема во многом аналогична схеме на рисунке 2. Для увеличения доли полезного сигнала низкого уровня на фоне неизбежных помех в схему УНЧ включен полосовой фильтр, обеспечивающий выделение частот в полосе 300 Гц -3.5 кГц.

Рис.5. Схема УНЧ на транзисторах с полосовым фильтром и варианты подключения микрофонов: а - УНЧ с полосовым фильтром, б - подключение динамического микрофона, в - подключение электретного микрофона.

Элементы для схемы на рисунке 5:

  • R1=43к-51к, R2=510к (подстройка, Uкт2=1.2В-1,8В),
  • R3=5.6к-6.8к (регулятор громкости), R4=3к, R5=8.2к,
  • R6=8.2к, R7=180, R8=750; R9=150к, R10=150к, R11=33к,
  • R12=620, R13=820-1,2к, R14=200-330,
  • R15=100к (подстройка, Uэт5=Uэт6=1.5В), R16=1 к (подстройка тока покоя Т5 и Т6, 1-2мА);
  • С1=10мкФ-50мкФ, С2=0.15-0.33, С3=1800,
  • С4=10мкФ-20мкФ, С5=0.022, С6=0.022,
  • С7=0.022, С8=1мкФ, С9=10мкФ-20мкФ, С10=100мкФ-500мкФ;
  • Т1, Т2, Т3 -159НТ1 В, КТ3102Е или аналогичные;
  • Т4, Т5 - КТ3102, КТ315 или аналогичные, но можно и устаревшие, германиевые транзисторы, например, МП38А,
  • Т6 - КТ3107 (если Т5 - КТ3102), КТ361 (если Т5 - КТ315) или аналогичные, но можно и устаревшие, германиевые транзисторы, например, МП42Б (если Т5 - МП38А);
  • М - МД64, МД200 (б), МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

В данной схеме также целесообразно использовать транзисторы с большим коэффициентом усиления, но малым обратным током коллектора (Iк0), например, 159НТ1В (Iк0=20нА) или КТ3102 (Iк0=50нА), или аналогичные. Выходные транзисторы могут использоваться как кремниевые (КТ315 и КТ361, КТ3102 и КТ3107, и т.п.), так и германиевые (устаревшие транзисторы МП38А и МП42Б и т.п.).

Настройка схемы, как и в случае схемы УНЧ на рис.11.2, сводится к установке резистором R2 и резистором RЗ соответствующих напряжений на транзисторах Т2 и Т5, Т6: 1,5В - на коллекторе Т2 и 1,5В - на эмиттерах Т5 и Т6.

Конструкция микрофона

Из большого листа плотной бумаги с ворсом, под бархат, изготавливается труба диаметром 10-15 см и длиной 1.5-2 м. Ворс, как можно догадаться, конечно, должен быть не снаружи, а внутри. В один конец этой трубы вставляется чувствительный микрофон. Лучше если это будет хороший динамический или конденсаторный микрофон.

Однако можно воспользоваться и обычным, бытовым, микрофоном. Это может быть, например, динамический микрофон типа МД64, МД200 или даже миниатюрный МКЭ-3.

Правда, с бытовым микрофоном результат будет несколько хуже. Конечно, микрофон необходимо подключить с помощью экранированного кабеля к чувствительному усилителю с малым уровнем собственных шумов (рис.1 и 2). Если длина кабеля превышает 0.5 м, то лучше воспользоваться микрофонным усилителем, имеющим дифференциальный вход, например, УНЧ на ОУ (рис.

Это позволит уменьшить синфазную составляющую помех - различного рода наводки от ближайших электромагнитных устройств, фон 50 Гц от сети 220 В и т. д. Теперь о втором конце данной бумажной трубы. Если этот свободный конец трубы направить на источник звука, например, на группу разговаривающих людей, то можно услышать речь. Казалось бы ничего особенного.

Именно для этого и существуют микрофоны. И труба для этого совершенно не нужна. Однако удивительно то, что расстояние до разговаривающих может быть значительным, например, 100 и более метров. И усилитель, и микрофон, снабженный такой трубой, позволяют все достаточно хорошо слышать на таком значительном удалении.

Расстояние может быть даже увеличено при использовании специальных селективных фильтров, позволяющих выделять или подавлять сигнал в узких полосах частот.

Это дает возможность повысить уровень полезного сигнала в условиях неизбежно существующих помех. В упрощенном варианте вместо спецфильтров можно применить полосовой фильтр в УНЧ (рис. 4) или воспользоваться обычным эквалайзером - многополосным регулятором тембра, в крайнем случае - традиционным, т.с. обычным, двухполосным, регулятором тембра НЧ и ВЧ.

Литература: Рудомедов Е.А., Рудометов В.Е - Электроника и шпионские страсти-3.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.